
Apartment threading in a client-server enviroment

Benjamin Muskalla (EclipseSource)

Version: 1.0.2

Abstract

This work covers the aspects of an event loop in a client-server enviroment. The event
loop itself is a well known concept of UI toolkits [Pik89] in order to react to the users
input. In this paper we will first declare a context for which such an implemenation
is needed. Furthermore there will be a discussion of several problems arising from this
kind of pattern in order to determinate a working solution. The result of this paper is
now part of the described product in the first sections.

2

Contents

Contents

1 Introduction 4
1.1 Context . 4
1.2 Single sourcing and beyond . 4
1.3 Problem description . 6

2 Event loop 7
2.1 Singled-threaded UI . 7
2.2 SWT readAndDispatch mechanism . 7
2.3 Distributed readAndDispatch mechanism 8

3 Rich Ajax Platform Architecture 9
3.1 RWT vs. SWT . 9
3.2 Lifecycle . 10
3.3 Phases . 11

4 Implementation 13
4.1 Seperating the event loop . 13
4.2 Initial lifecycle bootstrap . 13
4.3 Dedicated UI Thread on startup . 14
4.4 Continuing the UI thread . 15

5 Conclusion 19

3

1 Introduction

1 Introduction

1.1 Context

Eclipse evolved from a ground-breaking IDE to a new platform for application devel-

opers. The Eclipse foundation1 presented with the 3.0 release of Eclipse a platform

concept called Rich Client Platform (RCP)2. RCP was designed to have an open ar-

chitecture in order to build new (client) application without the need to have any

IDE-specific parts in it. In opposite to other frameworks RCP is very flexible in the

ways a developer can compose new applications. By the use of Equinox - a reference

implementation of the OSGi specification [All03] - you have a powerful and highly dy-

namic plugin-oriented application model. In addition Equinox helps developers with

additional services on top of OSGi like the extension point mechanism (see Figure 13)

The base technology for all UI-related activites is the Standard Widget Toolkit (SWT)4.

SWT acts as a widget toolkit by providing an abstraction layer above the operation

system resouces and reuses the native widgets in opposite to other UI frameworks like

Swing. Besides Eclipse itself there are many prominent projects using RCP as their

application framework like Bioclipse or IBM Lotus Symphony.

1.2 Single sourcing and beyond

Write once, run everywhere is the main objective of the JavaTMprogramming language

[AHL+05]. This holds true most of the time for running the same program on different

operation systems. But as technology evolves the Eclipse Foundations wants to bring

this slogan to a new level. Two new technology projects found their new home under

the Eclipse.org umbrella. Those two - namely RAP and eRCP - provide an alternative

runtime environment for RCP applications. This means that the application - normally

1http://www.eclipse.org
2http://www.eclipse.org/rcp
3Diagram is taken from http://en.wikipedia.org/wiki/OSGi
4http://www.eclipse.org/swt

4

1 Introduction

Figure 1: OSGi system layers

running as a desktop application on a personal computer - can now be deployed to

another runtime environment. To have a concrete example in this case let us assume

to have a ready to launch application based on RCP. By switching the runtime from

RCP to RAP it is now possible to launch the application on an application server

so clients can use the same application with a Web 2.0 centric interface within their

browsers. There is no need to install any further add-ons or plugins for the user. In

order to achieve a full compatibility between the platforms many concepts which are

already implemented in SWT need to be adapted to other runtimes and hidden behind

the public API which is synchronous across all runtime projects. One of the most

interesting items is the event loop of SWT being ported to the multi-user environment

RAP provides.

5

1 Introduction

1.3 Problem description

The overall goal was to provide the same event loop mechanism as SWT does. In

SWT they implemented the so-called apartment threading model in order to provide

implementations for all currently known platforms. In order to reuse the same source

code using this approach on a runtime like RAP there was a need to emulate the

same principals while keeping the multi-user enviroment of RAP in mind. Another big

difference is that RAP lives in an application server thus interacts trough the stateless

HTTP [BLFF96] protocol with its clients. Due to the request-response cycle it is not

trivial to implement the event loop as is as the request to the server would never come

back to the client. This results in a more complex scenario to handle incoming events

and dispatch them to the correct server-side widget implementation.

6

2 Event loop

2 Event loop

2.1 Singled-threaded UI

Nearly all GUI toolkits currently on the market are implemented in a singled-threaded

manner. This is based on the experience with frameworks (like AWT) trying to support

a multi-threaded UI toolkit. As it is really hard to correctly lock and synchronize ev-

erything most frameworks achieve thread safety via thread confinement (see [Hyd99]);

all GUI objects are accessed exclusively from the event thread [GPB+06]. This does

not mean that the applications using SWT are restricted to use a single thread but

every interaction with GUI toolkit needs to be done on a distinct thread. This thread

is normally called the event dispatch thread (EDT)) or UI Thread. Every interaction

between and application and the ouside world is handled by the UI thread. All events

fired due to user interaction with the operation system are put into a queue. Applica-

tions using SWT now have the chance to let SWT get those events out of the operation

system queue and dispatching them to the corresponding SWT widgets. This is called

the readAndDispatch-loop. The event loop repeatedly reads and dispatches the next

user interface event from the operating system. When an event is dispatched, it is

delivered to a widget for processing. For example, when the user moves the mouse, a

mouse event is delivered to the control that is under the cursor. The UI Thread in our

case is always the one which initially created the SWT Display [NW04].

2.2 SWT readAndDispatch mechanism

In order to have a more detailed look at the readAndDispatch mechanism we start first

with a little example how applications have to use the SWT API for event dispatching

(see Listing 1).

Listing 1: Hello World SWT Snippet

1 public stat ic void main (St r ing [] a rgs) {

7

2 Event loop

2 Display d i sp l ay = new Display () ;

3 S h e l l s h e l l = new S h e l l (d i sp l ay) ;

4 s h e l l . open () ;

5 while (! s h e l l . i sD i sposed ()) {

6 i f (! d i sp l ay . readAndDispatch ()) {

7 d i sp l ay . s l e e p () ;

8 }

9 }

10 d i sp l ay . d i spo s e () ;

11 }

As we saw in Listing 1 is that as long as there is no event to dispatch to the cor-

responding widgets the method sleep is called. It will wake up on any event recieved

from the operation system and delegates it to the readAndDispatch mechanism. This

allows a sequential event processing without busily waiting for the next event.

2.3 Distributed readAndDispatch mechanism

Adapting the apartment threading model to RWT has several fundamental problems.

The first and most redoubtable issue is the distributed nature of RAP. As RWT relies

on the Servlet specification [CY03] it has to handle the request-response cycle. Using

the same approach as SWT would fail as spinning the event loop in the request thread

would block all following requests. Another aspect the implementation should cover is

the multi-user capabilites of RAP. In contradiction to RCP - which runs for one user

at time - we need to care about multiple users accessing the server from multiple client

machines.

8

3 Rich Ajax Platform Architecture

3 Rich Ajax Platform Architecture

RAP is very similar to Eclipse RCP, but instead of being executed on a desktop com-

puter RAP is run on a server and clients can access the application with standard

browsers. This is mainly achieved by providing a special implementation of SWT (pre-

cisely a subset of SWT API). As we can see in Figure 2 the architecture of RAP is

mainly the same as in RCP. Only the fundamental layers needed some architectural re-

structuring due to the distributed nature of RAP. A rough overview about the structure

of RWT in comparison to SWT is given in Section 3.1.

Figure 2: RAP Architecture

3.1 RWT vs. SWT

Without going into too much detail there is one difference between SWT and RWT

which is worth to mention at this point. As we are in a multi-user environment with

RAP it is necessary to have a common entrypoint to the application itself. While this is

the well known main [AHL+05] method in pure Java programs we need a more abstract

way to define such an entrypoint. RAP provides an interface called IEntryPoint which

9

3 Rich Ajax Platform Architecture

contains the application startup code. The only three minor differences when looking

at the code compared to the SWT example (see Listing 1):

• Class needs to implement IEntrypoint

• Code is in createUI()

• Needs to return a status of type int

Listing 2: Hello World RWT Snippet

1 public class Hel loEntrypo int implements IEntrypo int

2 public int createUI () {

3 Display d i sp l ay = new Display () ;

4 S h e l l s h e l l = new S h e l l (d i sp l ay) ;

5 s h e l l . open () ;

6 while (! s h e l l . i sD i sposed ()) {

7 i f (! d i sp l ay . readAndDispatch ()) {

8 d i sp l ay . s l e e p () ;

9 }

10 }

11 d i sp l ay . d i spo s e () ;

12 return 0 ;

13 }

14 }

3.2 Lifecycle

Due to the distributed nature of RAP there needs to be a mechanism to synchronize

the state of the widgets between the server and the client. With each request from the

client the life cycle on the server side will be executed. It is responsible to process all

10

3 Rich Ajax Platform Architecture

changes and events from the client and in the end it will send back a response to the

client how to update the UI (eg. hide/show widgets, update data, etc). The life cycle

itself is splitted up in several phases which are executed in a specific order (see Figure

3).

Figure 3: RAP Lifecycle

The RAP lifecycle itself is managed and executed by an instance of ILifeCycleRunner

which in turn is triggered by the LifeCycleServiceHandler. The connection between the

outside world and the life cycle exists between the Servlet API and the LifeCycleSer-

viceHandler. In the next section the different phases are explained in a little more

detail. We will only cover the aspects which are interesting later for explaining the

implementation of the apartment threading model in RAP.

3.3 Phases

although there are four distinct phases implemented in RAP (see Table 1) we need to

take care that not all phases are executed with every request. The regular behavior of

RAP only uses the ProcessUIRoot and Render for the initial request of the application.

This is done because with the initial request there is no need to execute the remaining

phases as there no events triggered yet from the client. All subsequent requests use the

full chain of phases to respond to the client. Each phase is represented as a full object

by implementing the State design pattern [GHJV95, State].

11

3 Rich Ajax Platform Architecture

Table 1: Lifecycle phases

Phase Description

Prepare UI Root To initially start the application there needs to be a
bootstrap rendered to the client. In the case of using
the qooxdoo client side library this means to generate
an html page which includes references to all dependent
javascript libraries. This phase is only interesting for
the first request.

ReadData This is responsible to read the values sended from the
client like occurred events. At the end of this phase, all
widget attributes are in sync again with the values on
the client. The attributes are preserved for later use.

ProcessAction ProcessAction is responsible for dispatching the events
to the widgets. Attributes may change in this phase as
a response for the events.

Render At the end of the lifecycle every change will be rendered
to the client. Be aware that only values which are dif-
ferent than there preserved ones are send to the client
(means: only the delta).

12

4 Implementation

4 Implementation

There are several problems we needed to address while implementing a real readAnd-

Dispatch mechanism in RAP. One of the hand side we need to cover all differences

behind the real SWT API. Another big problem is that we cannot disturb the request-

response cycle while spinning the event loop.

4.1 Seperating the event loop

In order to prevent blocking the request thread we need to move the facilities of the

event loop to a separate thread. As you can see in Section 4.3 this is a dedicated

thread which is responsible for spinning the event loop. This helps to have a non-

blocking request thread in order to send the response back to the client at the end of

the lifecycle (see Section 3.2). The implementation requires that the lifecycle now runs

in the UI thread. This semantic change was needed to support the strict apartment

threading of SWT as widgets can only be accessed by the UI thread. But this does

not affect client code at all unless they relay on being handled in the request thread.

As the lifecycle needs to touch the widgets during the readData and processAction

phases (see Section 3.3) the lifecycle needs to run in the UI thread. A quick look at

the thread switching (see Figure 4) makes clear how the mechanism behaves at runtime.

4.2 Initial lifecycle bootstrap

The initial call to the lifecycle by the LifeCycleRunner is handled by the execute method

of the current life cycle implementation. We assume here that the current lifecycle

always refers to the RWTLifeCycle implementation. One thing which will definitely

happen when the lifecycle is called is that it tries to acquire an instance of a new

UIThread. With the instance of the session-scoped UIThread we can now initiate the

thread switching to run the lifecycle within the designated thread. The real thread

13

4 Implementation

Figure 4: Transition between UI and request thread

switching happens in the UIThread#switchThread method. The implementation just

lets the current active thread (the request thread) wait and notifies all other waiting

threads. Depending on the calling context - whether it is the initial startup of the

application or a subsequent request - the call to notify will start/resume the execution

in the now active UI thread.

4.3 Dedicated UI Thread on startup

As mentioned before the real event loop spins inside the UI thread. As we need to

combine the event loop and the existing life cycle phases we need to start process-

ing the life cycle. One of the most important methods in this case is RWTLife-

Cycle#continueLifeCycle. The method name already divines that it will continue

the life cycle from its current phase on. On the first request the application needs

to be started. This is done by calling the application startup implementation re-

siding in the applications entrypoint (see Listing 2). Running this ends up with

a call to Display#readAndDispatch which internally just delegates to RWTLifeCy-

cle#readAndDispatch. All queued events and runnables are now executed one by one

in order to start the application. By surrounding the readAndDispatch call by a while-

loop the application code itself spins as long as all queues are non-empty. If all queues

14

4 Implementation

are empty the readAndDispatch call will return false. If everything went fine the con-

trol flow now reaches the sleep call which tells the UI that there are no events to process

and the UI thread can fall into a non-blocking sleep. As we need to finish the lifecycle

- remember that we are in the initial request - and we only consumed the PrepareUI-

Root phase yet. To render the current server-side state of the application there is

one phase missing: the Render phase. Internally the call to sleep has to handle this

by calling RWTLifeCycle#continueLifeCycle again. The life cycle is now complete we

need to remember that we’re still in the UI thread without coming back. It is the time

now to complete the current request that is waiting for us in RWTLifeCycle#execute

(at that point it called switchThread and slept). The implementation of sleep now does

the same thing as we did in the beginning. It calls UIThread#switchThread but this

time from the UI thread. Remember that we initially switched from the request thread

to the UI thread. This time the switch is in the other direction and we continue to run

the execute of the life cycle (see Figure 5). As the UI thread is still interesting for all

subsequent requests it is stored in the current session of the user.

4.4 Continuing the UI thread

The initial application is now rendered in the client. On the first event occurring on the

client it triggers a round-trip to the server with a new request. The initial processing

is happening as before (see Section 3.2). As the session already has a dedicated UI

thread stored in the session we will use this one to do the thread switch. The thread

switch is needed to run the lifecycle inside the UI thread as before. And this is one of

the most interesting parts of the implementation. As we saw in the section before the

last statement of the initial request inside the UI thread was the call to switchThread

inside the sleep. The control flow then went down the road in the request thread. Now

- in a subsequent request - when we switch to the UI thread again it is still inside the

sleep method where it abdictated its responsibility. If we take a look at a (simplified)

version of the sleep implementation (see Listing 3) we may imagine what is happening.

15

4 Implementation

Figure 5: Thread transition at startup

16

4 Implementation

The initial request got into the sleep method, finalized the lifecycle with the first call

to continueLifeCycle and gave the control flow back to the request thread. Continuing

the UI thread now in a subsequent request continues this thread at the exact same

point where it again calls continueLifeCycle at the end of the method in order to start

the lifecycle. This means that the UI thread is waiting inside the sleep method between

any further request sent by the client.

As the life cycle is now started again for this subsequent request by the client it pro-

cesses it first phases like ReadData and ProcessAction(see Section 3.3). After the

ProcessAction phase which is responsible for delivering new events to the application

the continueLifeCycle exits, with it the sleep method is removed from the call stack

and the client application now is in has its turn. The return of sleep in the client

code calls again readAndDispatch (as it is inside the loop) and thus all new events are

dispatched to their corresponding widgets (see Figure 6).

Listing 3: sleep Implementation

1 public void s l e e p () {

2 cont inueL i f eCyc l e () ;

3 uiThread . switchThread () ;

4 cont inueL i f eCyc l e () ;

5 }

From this point the mechanism works as we already saw it in the intial request.

When the event and action runnable queues are empty readAndDispatch will return

false, the application calls sleep and the thread switch is triggered again to finalize the

lifecycle. In the end the changes triggered by the event handlers are sended back to

the client.

17

4 Implementation

Figure 6: Thread transition at runtime

18

5 Conclusion

5 Conclusion

In fact we saw that it is possible to have an event-driven UI in a distributed enviroment.

One of the key issues was the right handling and timing between the different threads.

One of major drawbacks of this approach is that every active user session requires a

dedicated thread to be stored within it. Unlike the request thread which is mostly

acquired from an internal thread pool for each new request the UI thread needs to stay

the same over the whole lifetime of a session. The final result of this work is included

in the latest versions of RAP and seems to scale very well in common enviroments.

19

Glossary

Glossary

(G)UI

(Graphical) User Interface

API

Application Programming Interface

eRCP

embedded Rich Client Platform

HTTP

Hypertext Transfer Protocol

IDE

Integrated Development Enviroment

OSGi

Open Service Gateway initiative

RAP

Rich Ajax Platform

RCP

Rich Client Platform

RWT

RAP Widget Toolkit

SWT

Standard Widget Toolkit

20

Listings

List of Figures

1 OSGi system layers . 5

2 RAP Architecture . 9

3 RAP Lifecycle . 11

4 Transition between UI and request thread 14

5 Thread transition at startup . 16

6 Thread transition at runtime . 18

List of Tables

1 Lifecycle phases . 12

Listings

1 Hello World SWT Snippet . 7

2 Hello World RWT Snippet . 10

3 sleep Implementation . 17

21

References

References

[AHL+05] Ken Arnold, David Holmes, Tim Lindholm, Frank Yellin, Frank Yellin,

The Java Team, Mary Campione, Kathy Walrath, Patrick Chan, Rosanna

Lee, Jonni Kanerva, James Gosling, James Gosling, James Gosling, James

Gosling, Bill Joy, Bill Joy, Guy Steele, Guy Steele, Gilad Bracha, and Gilad

Bracha. Java language specification, third edition, 2005.

[All03] Osgi Alliance. OSGi Service Platform: The OSGi Alliance. IOS Press,

December 2003.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol

– HTTP/1.0. RFC 1945 (Informational), May 1996.

[CY03] Danny Coward and Yutaka Yoshida. JavaTMservlet 2.4 specification (jsr

154). http://jcp.org/aboutJava/communityprocess/final/jsr154/

index.html, November 24, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns. Addison-Wesley Professional, January 1995.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,

and Doug Lea. Java Concurrency in Practice. Addison-Wesley Professional,

5 2006.

[Hyd99] Paul Hyde. Java Thread Programming. Sams, 1 edition, August 1999.

[NW04] S. Northover and M. Wilson. SWT: the standard widget toolkit. Volume 1.

Boston: Addison-Wesley, 2004.

[Pik89] Rob Pike. A concurrent window system. Computing Systems, 2:133–153,

1989.

22

http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html

	Introduction
	Context
	Single sourcing and beyond
	Problem description

	Event loop
	Singled-threaded UI
	SWT readAndDispatch mechanism
	Distributed readAndDispatch mechanism

	Rich Ajax Platform Architecture
	RWT vs. SWT
	Lifecycle
	Phases

	Implementation
	Seperating the event loop
	Initial lifecycle bootstrap
	Dedicated UI Thread on startup
	Continuing the UI thread

	Conclusion

